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In honey bees, appetitive motivation is primarily driven by the

needs of the colony rather than individual needs. The regula-

tion of appetitive behavior is achieved through the coordinated

action of neuropeptides, hormones and biogenic amines,

which integrate multiple signals to ensure appropriate appeti-

tive responses. Dopamine signalling underpins a food-related

wanting system that is sensitive to aversive experiences. The

short neuropeptide F (sNPF) enhances appetitive respon-

siveness, food intake and behavioral and neural responsive-

ness to food-related odorants. Additionally, it facilitates

appetitive learning and memory. On the contrary, tachykinin-

related peptides (TRPs) inhibit appetitive responses. Physio-

logical changes during the transition to the foraging state lead

to distinct patterns of insulin and adipokinetic hormone (AKH)

signaling, different from those seen in solitary insects, indi-

cating that social life had significant consequences on the

systems controlling appetitive motivation. Overall, studying the

neural bases of appetitive behavior in bees reveals unique

aspects that arise from their social lifestyle.

Addresses
1 Neuroscience Paris-Seine - Institut de Biologie Paris-Seine, CNRS,

INSERM, Sorbonne University, F-75005 Paris, France
2 School of Biological Science, University of Bristol, Bristol BS8 1TQ,

United Kingdom
3 Institut Universitaire de France, Paris, France

Corresponding authors: Giurfa, Martin (martin.giurfa@sorbonne-

universite.fr); de Brito Sanchez, Gabriela (maria-gabriela.de_brito_

sanchez@sorbonne-universite.fr)
a These authors contributed equally to this work.

Current Opinion in Neurobiology 2024, 89:102930

This review comes from a themed issue on Systems Neuroscience

2024

Edited by Seung-Hee Lee and Mehrdad Jazayeri

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.conb.2024.102930

0959-4388/© 2024 Elsevier Ltd. All rights are reserved, including those

for text and data mining, AI training, and similar technologies.

Animal survival depends on meeting basic needs such as
food, water, reproduction, and sleep, among others.

Pursuing these objectives relies on motivational drives
that energize behaviors leading to desired goals, which
are inherently rewarding [1]. Appetitive motivation,
which drives food-seeking behavior, integrates food-
related goals and excitatory drives that guide foraging
[2]. The regulation of appetitive behavior is orches-
trated by the coordinated action of molecules (peptides,
hormones, neurotransmitters, etc.), acting within spe-
cific neural circuits that integrate multiple signals to
ensure coordination between the external and internal
environments [3].

In insects, extensive research on the neural bases of
appetitive behavior has been conducted in the fruit fly
Drosophila melanogaster [4e6]. Yet, relying exclusively on
fruit flies may overlook fundamental evolutionary dif-
ferences between them and other insects, which vary in
key aspects of appetitive motivation. For example, social
insects display a critical distinction from solitary insects
like fruit flies: their appetitive food search is driven
primarily by the needs of the colony rather than indi-
vidual hunger [7e9]. While food provisioning is a key
aspect of parental care found in many species beyond
social insects, a crucial difference in social insects like
honey bees is that the foragers are not the parents. This
difference highlights a fundamental contrast with other
species and presents a fascinating research area that
combines sociality and individual motivation e one that
cannot be fully explored through Drosophila
research alone.

Here we focus on honey bees, which have pioneered
studies on the neurobiological bases of insect behavior
[10e15], and we review recent findings related to the
neural regulation of their appetitive motivation. We
focus on signalling pathways involving biogenic amines
and neuropeptides, which are modulated according to
the phases of the foraging cycle [16] and play a crucial
role in the appetitive behavior of bees.

A new perspective for dopamine in
appetitive motivation
Previous studies indicated that the biogenic amine
octopamine (OA) mediates the reinforcing properties of
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sucrose solution in appetitive olfactory learning. Acti-
vation of the sucrose-responding octopaminergic neuron
VUMmx1 via intracellular current injection following
odorant presentation resulted in olfactory learning even
if no sucrose was ever delivered [17]. This result showed
that OA substitutes for sucrose reward during olfactory
conditioning. Accordingly, brain injections of OA
following odorant presentation also supported olfactory
learning [18]. OA levels also increase in foragers [19]
and OA modulates reward representation during waggle
dances [20], which is consistent with a role in appetitive
reinforcer representation.

Dopamine (DA), on the contrary, had been shown to
mediate the reinforcing properties of aversive re-
inforcers such as electric shock in honey bees [12,21]. In
aversive olfactory conditioning, blockade of DA re-
ceptors impairs aversive learning [21]. Yet recent,
studies have changed this perception by including a
motivational perspective absent in previous analyses on
the role of DA. This perspective separated the processes
of wanting, liking and learning-related reward [22]. While
most of the above-mentioned studies relate to the
process of reward in learning, processes such as liking,
which refers to the hedonic impact of a pleasurable
reward, and wanting, which refers to the motivation to
seek the reward itself, had been rarely studied sepa-
rately. In mammals, wanting and liking are supported by
different brain systems and neuromodulatory circuits
[22]. In honey bees, two recent studies revealed that
DA is a key neurotransmitter for appetitive wanting
[23,24]. Huang et al. [23] showed that distinct food-
related motivational and communication states deter-
mine different levels of DA in the brain of foragers,
consistently with the existence of a DA-based wanting
system activated by both colony and individual needs.
Foragers motivated to collect food exhibit higher levels
of DA in the brain and pharmacological blockade of
dopaminergic signalling decreases foraging, consistently
with the inhibition of a DA-based wanting system
[22,25,26]. DA brain levels also increase when foragers
report distance and direction of a profitable food source
via the waggle dance, which suggests that during dances,
bees reactivate motivation for the appetitive properties
of the food source (Figure 1). Individual starvation also
increases DA brain levels, thus showing that besides a
colony-driven DA wanting, an individually hunger-
driven DA wanting also exists [23]. Consistently, artifi-
cial DA enhancement rescues appetitive responsiveness
in partially fed bees and improves appetitive learning
and memory [23]. A technical discussion of these find-
ings is available in Refs. [27,28].

Negative experiences in a foraging context also affect
significantly appetitive dopaminergic wanting [24].
Honey bees exposed at a feeder to predatory hornets
increase alarm and escape responses and decrease
significantly foraging activities, staying longer in the

hive. Waggle dances for that feeder are also reduced via
stop signals used to cease dancing and recruitment to a
dangerous place. As expected, DA levels in the brain of
motivated dancers are higher than those of control bees.
Yet, stop signallers, which experienced the presence of
hornets, exhibit decreased DA levels. Besides, receivers,
which did not experience hornet attacks themselves but
got stop signals, also present reduced DA levels [24].
Overall, these findings show that aversive experiences
decrease appetitive motivation and DA in the bee brain
and that communicating about negative experiences
induces the same effect.

The existence of a dopaminergic wanting system is
consistent with reports showing that levels of DA reach a
peak at the foraging stage [29] and that honey bee
dancers have higher levels of DA [30], a fact that was
originally related to the regulation of sensory informa-
tion and processing of locomotory information [30]
rather than to motivational levels. Different populations
of dopaminergic neurons [31] may mediate appetitive
wanting and aversive reinforcement signalling, recon-
ciling the two different functions reported for DA.

As mentioned above, besides DA, OA has also been
shown to increase in foragers [19] and to mediate waggle
dances [20] despite being present in lower quantities
compared to DA [30]. This raises the question of the
specific contribution of DA and OA to appetitive moti-
vation. A possible answer is provided by a recent work in
which bees had to decide whether to rely on their own

Figure 1

A foraging bout showing dopamine (DA) fluctuation (red arrows) quantified

in individual bee brains using high resolution HPLC. Foragers leave the

hive with elevated DA levels, which are present upon arrival at a known

profitable food source, consistently with an appetitive DA-driven wanting

system. Feeding consummates the appetitive goal and decreases DA

levels so that returning bees have also lower DA levels. During dances

reporting an exploited, profitable food source, dancers exhibit enhanced

DA levels, which suggests that dancers recollect transiently the appetitive

properties of the food source, elevating thereby DA levels in their brains.

Adapted from Ref. [23].
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experience of a rewarded feeder or on dances reporting
an alternative, unknown feeder [32]. When bees were
fed with sucrose solution containing OA, they paid less
attention to the social information provided by dances
indicating the unknown feeder and reactivated the visits
to their known feeder; on the contrary, if they were fed
with DA, they attended more the dances for the un-
known source. This suggests that OA may reactivate
learning-dependent circuits, which rely on OA to signal
reward [17] (i.e. feeder memories), thus leading to
prioritization of individual experience while DA,
reflecting appetitive motivation, would be evoked by
feeder reminiscences and by social information. Both
processes may underlie the foraging and communication
of motivated bees.

sNPF, a neuropeptide driving appetitive
responses
Neuropeptides range from a few to around 100 amino
acids, and are secreted by a large variety of neurons of
the central nervous system. They act as neuro-
modulators [33] and regulate multiple behaviors
[34,35]. Among these molecules, the neuropeptide F
(NPF) [36e38] and the short neuropeptide F (sNPF)
[39e41] may either promote or inhibit feeding and/or
food search depending on the insect species considered.

In honey bees, two peptides NPF and sNPF, have been
identified. However, only a receptor gene for sNPF
(snpfR) was found [42,43]. Accordingly, recent studies
[44,45] focused on the role of sNPF for appetitive
decision-making and learning, as well as for aversive
responsiveness. Foragers differing in feeding status
(starved vs. partially fed) and in sNPF levels, which were
varied by subjecting partially fed bees to topical appli-
cations of sNPF on their thorax [46] were used
(Figure 2a). They were subjected to tests quantifying
appetitive responding either via individual consumption
of sucrose solution or via proboscis extension response
(PER) upon antennal stimulation with sucrose solutions
of different concentrations [44]. As expected, starved
bees were more responsive to sucrose and consumed
more sucrose solution than partially fed bees. Yet,
increasing internal levels of sNPF in partially fed bees
increased their responsiveness and food consumption to
the levels of their starved counterparts [44] despite the
presence of food in their crops (Figure 2b,c). Appetitive
responding (PER) to odorants with intrinsic appetitive
value [47] yielded a similar picture: starved animals
were more responsive than partially fed ones but
increasing sNPF levels rescued in part responding in the
latter (Figure 2d). To search for a neural correlate of this
differential odor responding, the activity of the olfactory
circuits in the bee brain was recorded using calcium
imaging [44]. Projection neurons conveying olfactory
information from the first olfactory neuropil, the

Figure 2

The effect of sNPF on appetitive responses of honey bee foragers. a)

Experimental groups of foragers. Foragers were either starved or

partially fed. The latter received a topical application of a solvent or of

sNPF. b) Sucrose responsiveness. Harnessed bees were tested on a

series of increasing sucrose concentrations. The proportion of probos-

cis extension response (PER) was higher in starved and partially fed

foragers treated with sNPF than in partially fed bees, untreated or

treated with the solvent. c) Ingestion. Starved and partially fed foragers

treated with sNPF ingested more sucrose solution than partially fed

bees, untreated or treated with the solvent. d) Activity of projection

neurons (PNs) upon odor stimulations. Using in vivo calcium imag-

ing, the glomerular responses to linalool, 2-phenylethanol and nonanal

were visualized before and after feeding + topical application of solvent

or sNPF. Feeding decreases the neural activity of olfactory PNs in the

bee brain while sNPF rescues neural responses of partially fed bees to

the level exhibited by starved bees. e) Olfactory responsiveness.

Harnessed bees were stimulated with appetitive odours (linalool and 2-

phenylethanol) that naturally trigger PER. The proportion of PER was

higher in starved and in partially fed bees treated with sNPF. f) General

conclusions. Topical application of solvent does not change appetitive

behaviour of partially fed bees as these bees behaved like their un-

treated partially-fed counterparts. However, a topical application of

sNPF on partially fed bees makes them behave like starved foragers.

Adapted from Ref. [44].
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antennal lobe, to higher-order olfactory centers, such as
the mushroom bodies and the lateral horn, responded
differently to odorants according to the animal’s feeding
state. Responses were lower in partially fed animals than
in starved animals; yet, sNPF treatment rescued neural
responsiveness in partially fed bees to the level of
starved ones (Figure 2c), thus showing that sNPF
modulates, not only feeding-related responses, but also
sensory responsiveness. The role of sNPF in aversive
responding was studied by recording the sting extension
response (SER) exhibited by honey bees in response to
nociceptive stimuli such as electric and thermal shocks.
Aversive responsiveness to both kind of stimuli was
unaffected by sNPF, thus showing that contrary to fruit
flies, where NPF promotes resilience to stress and
aversive stimuli [48], sNPF does not control aversive
responding in bees [49,50].

Finally, the impact of sNPFon visual learning was studied
in flying bees differing in feeding state (starved vs.
partially fed) and in sNPF levels [45]. Bees were condi-
tioned to discriminate a yellow from a blue target in a
miniature maze. Each trained bee remained in the maze
for the entire training as returning to the hive and
unloading the food gathered would change the crop
contents, the motivational state and possibly sNPF
levels. After completing the training, bees were subjec-
ted to a memory test. Artificially increasing sNPF levels
in partially-fed foragers with a reduced motivation to
learn colors resulted in significant color learning and
memory above the levels exhibited by starved foragers
[45]. These results thus identify sNPF as a critical
component of motivational processes involved in foraging
and in the cognitive processes associated to this activity.

Tachykinin, an inhibitor of appetitive
responses
Tachykinin is a member of the structurally related RF-
amide peptide family referred to as tachykinin-related
peptides (TRPs) [51]. In honey bees, TRPs are pre-
dominantly expressed in the mushroom bodies and in
some neurons of the antennal and optic lobes [52]; some
expression has also been found in the antennae [53].
Tachykinin has been recently studied in two honey bee
species, Apis mellifera and Apis cerana, in which appetitive
responses (PER) of nurses, pollen foragers and nectar
foragers to brood, pollen and sucrose contacting their
antennae were quantified upon TRP injection and
RNAi-mediated knockdown of the TRP receptor
(TRPR) [54] (Figure 3). TRP signalling regulated
responsiveness to these three types of stimuli in a task-
specific manner: for instance, injection of the tachykinin
related peptide TRP2 decreased sucrose responsiveness
in nectar and pollen foragers but not in nurse bees. On
the contrary, the same injection decreased PER to
antennal larval stimulation in nurses but neither in
pollen nor in nectar foragers. RNAi-mediated

knockdown of TRPR had the opposite effect: it
increased sucrose responsiveness in nectar and pollen
foragers but not in nurse bees, and increased respon-
siveness to larval stimulation in nurse bees but neither
in pollen nor in nectar foragers [54]. Thus, compared to
sNPF, TRP signalling seems to act in an opposite way,
inhibiting rather than promoting appetitive responses.

Leucokinin, a role to be clarified
In D melanogaster, leucokinin modulates taste detection
[55] and signals that the crop is full, prompting the
cessation of meal ingestion [56]. Its signalling occurs via
insulin like peptides [57,58] and via serotonin, which
diminishes the activity of leucokinin neurons [59]. In
the Asian honey bee A. cerana, the relative expression of
the leucokinin receptor gene (Lkr) was higher both in
the antennae and brain of foragers compared to those of
nurse bees, thus suggesting a role in foraging activity
[60]. RNAi knockdown of Lkr induced a significant in-
crease in the sucrose response threshold when sucrose
solution stimulated the bees’ antennae, thus suggesting
that signalling through the leucokinin receptor confers
high sucrose sensitivity while blockade of this signalling
reduces it [60]. Intriguingly, the same results were ob-
tained when sucrose solutions were brought close to the
antennae without physical contact [60]. This result can
be due to a change in sensitivity of antennal hygro-
receptors, thus asking for more experiments to disen-
tangle this effect from that reported on
sucrose responsiveness.

Insulin plays a different role in honey bees
than in solitary insects
The insulin/insulin-like growth factor signalling (IIS) is
activated by the interaction between insulin-like pep-
tides (ILPs) and their respective insulin receptors
(InRs) [61]. Invertebrate ILPs have functions homolo-
gous to those of the insulin and insulin-like growth
factor 1 ligands found in mammals, i.e. they advertise a
satiated individual that it does not need food by relaying
information about glycogen levels to the brain [61]. In
insects, ILPs are produced in the brain and peripheral
tissues such as the fat body, and circulate either as
hormones or neuromodulators [61], impacting nutrient-
related and nutrient-unrelated behaviors [62]. In D.
melanogaster, elevated circulating levels of ILPs following
food consumption inhibit the action of sNPF expression
in the olfactory sensory neurons, resulting in less
sensitivity to food associated odors and suppression of
food searching behavior [63].

This scheme is different from that of honey bees, which
experience a series of physiological changes before
transitioning to foraging activities, which include a
massive reduction of fat bodies and their associated lipid
stores [64,65]. The reduction of the fat body is accom-
panied by an increase in juvenile hormone (JH) [66] and
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ILP levels [67,68]. Foragers have higher whole-body IIS
activity compared to younger workers, which
relates to their higher brain IIS [69] but lower fat body
IIS [70].

Two genes encoding ILPs (ilp1 and ilp2) have been
found in bees, which are expressed in the brain and the
fat body [67,69]. The corresponding insulin peptides
ILP1 and ILP2 affect differentially female caste devel-
opment, with ILP2 affecting ovary and body-mass

development and ILP1 regulating JH production [71].
In bees, the role of insulin in appetitive decisions is less
clear and varies with age. Insulin-related signalling
seems to control food choice as knock-down of the in-
sulin receptor substrate (irs) gene leads to a preference
for lipid and protein-rich pollen over nectar [72]. In-
jection of insulin in young bees determines an increase
in responsiveness to odorants and to sucrose solution but
a decrease in learning abilities. In older bees, the effects
of insulin injection are the opposite [73].

Figure 3

The effect of the tachykinin pathway (signalling via the tachykinin-related peptide [TRP] and its receptor [TRPR]) on responsiveness of nurses, pollen

foragers and nectar foragers to brood (B), pollen (P) and nectar (N). The tachykinin pathway affects responsiveness in a caste and task-specific manner.

Pathway activation decreases brood responsiveness in nurses but has no effect on their sucrose and pollen responsiveness; in pollen foragers, pathway

activation decreases pollen and nectar responsiveness but has no effect on brood responsiveness; in nectar foragers, pathway activation decreases

nectar responsiveness but has no effect on brood nor on pollen responsiveness. ‘-’ indicates signalling inactive (light-blue circle); ‘+’ indicates signalling

active (pink circle). Vertical red arrows pointing upwards indicate increase in responsiveness; vertical blue arrows pointing downwards indicate decrease

in responsiveness. Adapted from Ref. [54].
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Adipokinetic hormone (AKH), a limited
action as a consequence of the social-life
style
The adipokinetic hormone (AKH) of insects is consid-
ered as an equivalent of the mammalian hormone
glucagon as it induces fast mobilization of carbohydrates
and lipids from the fat body upon starvation [74e76].
Yet, contrary to solitary insect species, which rely on
these processes for sustaining their activities, bees do
not collect food for individual consumption but bring it
back to the hive, where it is processed, stored and
distributed. Moreover, foragers have a reduced fat body
[77] with low glycogen reserves [78] and with a signif-
icant reduction in abdominal lipids preceding the onset
of foraging [64,79]. To sustain foraging flights, bees load
minute amounts of honey in the crop before departing
from the hive [78,80]. These features indicate that the
social life of bees has important consequences for the
regulation of their metabolic pathways. Accordingly, no
physiological response to AKH injection was detected in
active foragers [81] so that it was suggested that AKH
might have lost its original function in social bees [82].

To test this hypothesis, bees differing in their energy
budget (starved or partially fed) were topically exposed
with different doses of AKH to determine if this hor-
mone modified food ingestion and sucrose responsive-
ness [83]. As expected, starved bees were more prone to
ingest and to respond to sucrose solution. Yet, no effect
of AKH could be detected [83]. These results are

consistent with a loss of function of AKH in honey bee
foragers, in accordance with a social life that implies
storing energy resources in the hive, in amounts that
exceed individual needs. More experiments are needed
to elucidate if AKH plays a specific role in nonforag-
ing bees.

Open questions and outlook
Neuropeptides and neurohormones are key regulators of
appetitive behavior in honey bees, influencing the
motivation, reward processing, and learning associated
with foraging activities (Figure 4). In this scenario,
distinguishing between wanting, liking and learning-
related reward processing is important to disentangle
the different contributions of these different forms of
signalling to appetitive decision making. Further neu-
ropeptides such as inotocin, which modulates foraging in
ants in the presence of larvae or pupae [84], await
investigation in bees. Two essential questions remain to
be elucidated: 1) which specific circuits in the bee
nervous system provide these different forms of signal-
ling and if and how they interact, and 2) given that
appetitive motivation responds largely to colony needs,
which are the social cues modulating these different
forms of signalling.

The identity of dopaminergic neurons underlying
motivational wanting remains to be identified among
the numerous clusters of dopaminergic neurons existing

Figure 4

A summary of the different forms of neural signalling discussed in this work and their effect on appetitive foraging motivation. A gradient of appetitive

motivation (from low, blue, to high, red) is shown at the bottom. DA: Dopaminergic signalling; sNPF: sNPF signalling; TRP: tachykinin related peptide

signalling; LK: leucokinin signalling; INS: insulin-like peptide signalling; AKH: adipokinetic hormone signalling. Upward red arrows indicate increases;

downward blue arrows indicate decreases; dashed arrows (upward or downward) indicate that the supposed increases or decreases remain to be

verified. The question sign (‘?’) within an arrow indicates that the supposed effect remains to be verified. The sign ‘–’ (AKH) indicates lack of effect in a

foraging context.
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in the bee brain [31]. In the same way, if and how these
neurons interact with sNPF signalling awaits clarifica-
tion. In fruit flies, the relationship between sNPF (or
NPF) signalling and dopaminergic neurons in appetitive
responding and learning has been shown both in the
larva and in adult flies [85e87]; a similar knowledge is
still missing in the bee. While an experimentally
supported model for the relationship between midgut-
derived NPF and AKH and insulin-like peptides
(ILPs) exists in Drosophila [88], a similar model is not
available for bees, given the difficulty of integrating the
different function of ILPs and the loss of function
of AKH.

The appealing unanswered question is if and how social
cues within the hive modulate the levels of these mul-
tiple signalling channels to control appetitive motivation
and foraging activities. Appetitive pheromones, i.e.
pheromones promoting foraging activity, such as brood
pheromones, may be responsible for modulating some of
the pathways discussed in this review [89]. Pheromones
affect appetitive responsiveness [90] and appetitive
learning and memory [91], thus being candidates for
modulating motivational pathways. If this were the case,
it would constitute a fascinating example of social con-
trol of neural motivational pathways, and a cornerstone
of sociality. Further research in this field, combining
pheromone exposure, control of nutritional states, and
molecular analyses such as spatial transcriptomics in key
brain regions, promises to deepen our understanding of
insect behavior and may lead to the development of
strategies to enhance pollination and agriculture.

Glossary
Three main components in the processing of appetitive
rewards are acknowledged [22]:

� ‘Liking’: refers to the actual pleasurable impact of
reward consumption.

� ‘Wanting’: refers to the motivation to reach the
reward

� ‘Learning’: includes the information about reward
acquired through individual experience
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